
Script to run few Actions from Control Panel – Configuration Manager

In this guide, I will show you how to use the script to run few actions from control panel – configuration

manager after IPU or Bare Metal or OS Refresh. I was able to get the script from SCCM Community MVP

where, I posted the request and it was answered. Thought it might help others as well.

At the current project, I run the script as the last step before leaving the office so w/s can get all the

policy applied and any updates or applications to be installed will be completed by early morning so

users don’t have to wait for an update or application to install. This reduce their wait time to start their

daily routine.

First thing you will have to copy the file to a network share from where you can access the script. The

procedure to run the script are as follows:

1. Copy the PowerShell Script from network share to local C:\Temp or any folder of your choice

2. Type PowerShell – Right Click - Open File Location – Right Click Run as Admin or DSS Support

3. Go to the path where you have the script copied – In my case C:\Temp

4. Run this command - Start-CMClientAction -Schedule AppEval,MachinePol,UpdateEval,DDR,UpdateScan

5.

6. If there is no error it will return to command prompt – if there is any error then you will see red

message. In my case the command executed successfully

Now the workstation will reach out to the server and refresh above policy and any updates or

application that needs to be installed will be carried out automatically within Software Center.

I choose only few of the actions that are vital for the project. You can run other actions, if you need so.

Here is the screen shot of the actions that, I choose to run.

Thanks

Ram Lan
12th Jul 2019

Note – The Script file name is Start-CMClientAction.ps1

function Start-CMClientAction {
 <#
.SYNOPSIS
 Invokes CM Client actions on local or remote machines

.DESCRIPTION
 This script will allow you to invoke a set of CM Client actions on a machine (with
optional credentials), providing a list of the actions and an optional delay betweens
actions.
 The function will attempt for a default of 5 minutes to invoke the action, with a
10 second delay inbetween attempts. This is to account for invoke-wmimethod failures.

.PARAMETER Schedule
 Define the schedules to run on the machine - 'HardwareInv', 'FullHardwareInv',
'SoftwareInv', 'UpdateScan', 'UpdateEval', 'MachinePol', 'AppEval', 'DDR'

.PARAMETER Delay
 Specify the delay in seconds between each schedule when more than one is ran -
0-30 seconds

.PARAMETER ComputerName
 Specifies the computers to run this against

.PARAMETER Timeout
 Specifies the timeout in minutes after which any individual computer will stop
attempting the schedules. Default is 5 minutes.

.PARAMETER Credential
 Optional PSCredential

.EXAMPLE
 # Start a machine policy eval and a hardware inventory cycle
 Start-CMClientAction -Schedule MachinePol,HardwareInv or
 Start-CMClientAction -Schedule AppEval,MachinePol,UpdateEval,DDR,UpdateScan

.NOTES
 FileName: Start-CMClientAction.ps1
 Author: Cody Mathis
 Contact: @CodyMathis123
 Created: 11-29-2018
 Updated: 03-09-2019
#>
 [CmdletBinding(SupportsShouldProcess = $true)]
 param
 (
 [parameter(Mandatory = $false, ValueFromPipelineByPropertyName = $true)]
 [Alias('Computer', 'HostName', 'ServerName', 'IPAddress')]
 [string[]]$ComputerName = $env:COMPUTERNAME,
 [parameter(Mandatory = $true)]
 [ValidateSet('HardwareInv', 'FullHardwareInv', 'SoftwareInv', 'UpdateScan',
'UpdateEval', 'MachinePol', 'AppEval', 'DDR')]
 [string[]]$Schedule,
 [parameter(Mandatory = $false)]
 [ValidateRange(0, 30)]
 [int]$Delay = 5,
 [parameter(Mandatory = $false)]
 [int]$Timeout = 5,
 [parameter(Mandatory = $false)]
 [pscredential]$Credential
)
 begin {
 $TimeSpan = New-TimeSpan -Minutes $Timeout
 }
 process {
 foreach ($Computer in $ComputerName) {
 foreach ($Option in $Schedule) {
 $Action = switch -Regex ($Option) {
 '^HardwareInv$|^FullHardwareInv$' {
 '{00000000-0000-0000-0000-000000000001}'
 }

 '^SoftwareInv$' {
 '{00000000-0000-0000-0000-000000000002}'
 }
 '^UpdateScan$' {
 '{00000000-0000-0000-0000-000000000113}'
 }
 '^UpdateEval$' {
 '{00000000-0000-0000-0000-000000000108}'
 }
 '^MachinePol$' {
 '{00000000-0000-0000-0000-000000000021}'
 }
 '^AppEval$' {
 '{00000000-0000-0000-0000-000000000121}'
 }
 '^DDR$' {
 '{00000000-0000-0000-0000-000000000003}'
 }
 }

 $StopWatch = [System.Diagnostics.Stopwatch]::StartNew()
 do {
 try {
 Remove-Variable MustExit -ErrorAction SilentlyContinue
 Remove-Variable Invocation -ErrorAction SilentlyContinue
 if ($Option -eq 'FullHardwareInv') {
 $getWMIObjectSplat = @{
 ComputerName = $Computer
 Namespace = 'root\ccm\invagt'
 Class = 'InventoryActionStatus'
 Filter = "InventoryActionID ='$Action'"
 ErrorAction = 'Stop'
 }
 if ($PSBoundParameters.ContainsKey('Credential')) {
 $getWMIObjectSplat.Add('Credential', $Credential)
 }
 Write-Verbose "Attempting to delete Hardware Inventory
history for $Computer as a FullHardwareInv was requested"
 $HWInv = Get-WMIObject @getWMIObjectSplat
 if ($null -ne $HWInv) {
 $HWInv.Delete()
 Write-Verbose "Hardware Inventory history deleted for
$Computer"
 }
 else {
 Write-Verbose "No Hardware Inventory history to delete
for $Computer"
 }
 }
 $invokeWmiMethodSplat = @{
 ComputerName = $Computer
 Name = 'TriggerSchedule'
 Namespace = 'root\ccm'
 Class = 'sms_client'
 ArgumentList = $Action
 ErrorAction = 'Stop'
 }
 if ($PSBoundParameters.ContainsKey('Credential')) {
 $invokeWmiMethodSplat.Add('Credential', $Credential)
 }
 Write-Verbose "Triggering a $Option Cycle on $Computer via the
'TriggerSchedule' WMI method"
 $Invocation = Invoke-WmiMethod @invokeWmiMethodSplat
 }
 catch [System.UnauthorizedAccessException] {
 Write-Error -Message "Access denied to $Computer" -Category
AuthenticationError -Exception $_.Exception
 $MustExit = $true
 }
 catch {
 Write-Warning "Failed to invoke the $Option cycle via WMI.
Will retry every 10 seconds until [StopWatch $($StopWatch.Elapsed) -ge $Timeout
minutes] Error: $($_.Exception.Message)"

 Start-Sleep -Seconds 10
 }
 }
 until ($Invocation -or $StopWatch.Elapsed -ge $TimeSpan -or $MustExit)
 if ($Invocation) {
 Write-Verbose "Successfully invoked the $Option Cycle on $Computer
via the 'TriggerSchedule' WMI method"
 Start-Sleep -Seconds $Delay
 }
 elseif ($StopWatch.Elapsed -ge $TimeSpan) {
 Write-Error "Failed to invoke $Option cycle via WMI after $Timeout
minutes of retrrying."
 }
 $StopWatch.Reset()
 }
 }
 }
 end {
 Write-Verbose "Following actions invoked - $Schedule"
 }
}

